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Math Analysis 
The Following is the list of all kind of Math Analysis courses 

that OMATHA can offer either online or home tutoring 

Elementary Real Analysis 
Review of the completeness properties of real numbers. Supremum and infimum, lim sup, lim inf. The topology 
of R¢n. Uniform continuity. Compactness, Heine-Borel. The Riemann integral, the fundamental theorem of 
calculus, improper integrals. Sequences and series of functions, uniform convergence, and Fourier series. 
Note: This course is mostly intended for those students whose majors might be Mathematics or Statistics. 
 
Elementary  or  Introductory Mathematical Analysis 
This course is for students who have successfully completed Calculus I & II. This course presents foundation 
concepts in analysis. It is normally required material for mathematics majors. Topics studied include the nature 
of proof, set theory and cardinality, the real numbers, limits of sequences and functions, continuity, formal 
coverage of the derivative and the mean value theorem, Taylor’s theorem, the Riemann integral, the fundamental 
theorem of calculus, and topics in infinite series. 
 
Elements of Real Analysis 
Metric spaces, continuous functions. Compactness and connectedness. Contraction mappings. The inverse 
function theorem and the implicit function theorem. Series of functions; modes of convergence, power series, 
Fourier series. Topics on function spaces such as: Weierstrass approximation, L^2 spaces. 
 
Note: This course is intended for Pure and Applied Mathematics Students. 
 
Fundamental Concepts of Analysis 
Recommended for Mathematics majors and required of honors Mathematics majors. A more advanced and 
general version of Math 115, introducing and using metric spaces. Properties of Riemann integrals, continuous 
functions and convergence in metric spaces; compact metric spaces, basic point set topology. 
 
Lebesgue Integration and Fourier Analysis 
Similar to 205A, but for undergraduate Math majors and graduate students in other disciplines. Topics include 
Lebesgue measure on Euclidean space, Lebesgue integration, L^p spaces, the Fourier transform, the 
Hardy-Littlewood maximal function and Lebesgue differentiation. 
 

 Mathematical Analysis I 
This Course is intended to serve as a first course in analysis that is usually taken by advanced undergraduates or 
by first-year students who study mathematics. The contents of this course are the fo;;oeing: 
• The Real and Complex Number Systems (Introduction, Ordered Sets, Fields, The Real Field  , The 

Extended Real Number System  , The Complex Field  , Euclidean Spaces)  
• Basic Topology (Finite, Countable, and Uncountable Sets  , Metric Spaces  , Compact Sets  , Perfect Sets, 

Connected Sets) 
• Numerical Sequences and Series (Convergent Sequences  , Subsequences  , Cauchy Sequences  , Upper and 

Lower Limits  , Some Special Sequences  , Series  , Series of Nonnegative Terms  , The Number e  , The Root and 
Ratio Tests  , Power Series  , Summation by Parts  , Absolute Convergence  , Addition and Multiplication of 
Series  , Rearrangements) 

• Continuity (Limits of Functions  , Continuous Fur1ctions  , Continuity and Compactness  , Continuity and 
Connectedness  , Discontinuities  , Monotonic Functions  , Infinite Limits and Limits at Infinity) 
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Mathematical Analysis II 
This course is intended to serve as a second course in analysis that is usually taken by advanced first-year 

 undergraduate students who study mathematics. The contents of this course are the following: 
• Differentiation (The Derivative of a Real Function  , Mean Value Theorems  , The Continuity of Derivatives  ,

L'Hospital's Rule  , Derivatives of Higher Order  , Taylor's Theorem  , Differentiation of Vector-valued Functions) 
• The Riemann-Stieltjes Integral (Definition and Existence of the Integral  , Properties of the Integral  ,

Integration and Differentiation  , Integration of Vector-valued Functions  , Rectifiable Curves) 
• Sequences and Series of Functions (Discussion of Main Problem  , Uniform Convergence 

Uniform Convergence and Continuity  , Uniform Convergence and Integration  , Uniform Convergence and 
Differentiation  , Equicontinuous Families of Functions  , The Stone-Weierstrass Theorem) 

• Some Special Functions (Power Series  , The Exponential and Logarithmic Functions  , The Trigonometric 
Functions  , The Algebraic Completeness of the Complex Field  , Fourier Series  , The Gamma Function)  

Mathematical Analysis III 
This course is intended to serve as a third course in analysis that is usually taken by  senior    undegraduate or 
first-year  graduate students who study mathematics. The contents of this course are the following: 
• Functions of Several Variables (Linear Transformations  , Differentiation  , The Contraction Principle  , The 

Inverse Function Theorem  , The Implicit Function Theorem  , The Rank Theorem  , Determinants  , Derivatives 
of Higher Order  , Differentiation of Integrals) 

• Integration of Differential Forms (Integration, Primitive Mappings  , Partitions of Unity  , Change of 
Variables  , Differential Forms  , Simplexes and Chains  , Stokes' Theorem  , Closed Forms and Exact 
Forms,Vector Analysis) 

• The Lebesgue Theory (Set Functions  , Construction of the Lebesgue Measure  , Measure Spaces  , Measurable 
Functions  , Simple Functions  , Integration  , Comparison with the Riemann Integral  , Integration of Complex 
Functions  , Functions of Class L^2)   

Vector Analysis 
This course is an introduction to vector analysis, and is an honors version of   Calculus  of  Several Variables.. The 
material covered will be a strict super-set of 268, and more emphasis will be placed on writing rigorous proofs. 
The treatment of differential calculus will be through and rigorous. In the interest of time, however, many results 
on integral calculus will be stated without proof, or proved under simplifying assumptions. 

 A Tentative Syllabus for this course is: Functions of several variables, regions and domains, limits and 
continuity. Sequential compactness. Partial derivatives, linearization, Jacobian. Chain rule, inverse and implicit 
functions and geometric applications. Higher derivatives, Taylor’s theorem, optimization, vector fields. 
Multiple integrals and change of variables, Leibnitz’s rule. Line integrals, Green’s theorem. Path independence 
and connectedness, conservative vector fields. Surfaces and orientability, surface integrals. Divergence theorem 
and Stokes’s theorem. 
 
Elementary Complex Analysis 
This is an introductory course to Complex Analysis at an undergraduate level. Complex Analysis, in a nutshell, 
is the theory of differentiation and integration of functions with complex-valued arguments. While the course 
will try to include rigorous proofs for many - but not all - of the material covered, emphasize will be placed on 
applications and examples. Complex Analysis is a topic that is extremely useful in many applied topics such as 
numerical analysis, electrical engineering, physics, chaos theory, and much more, and you will see some of these 
applications throughout the course. In addition, complex analysis is a subject that is, in a sense, very complete. 
The concept of complex differentiation is much more restrictive than that of real differentiation and as a result 
the corresponding theory of complex differentiable functions is a particularly nice one - as you will hopefully 
agree at the end of the course. The course will cover  the  following materials that are considered standard for an 
undergraduate complex analysis course: 
1. Complex Numbers (Basic Algebraic, Vectors and Moduli,Conjugates,Exponentials, Products and Powers, 

Roots, Regions in the Complex Plane) 
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2.  Analytic Functions (Limits, Continuity, Derivatives, Cauchy Riemann Equations, Analytic Functions,               
     Harmonic Functions) 
3.  Elementary Functions (Exponential, Logarithm, Complex Exponents, Trigs, Hyperbolic Functions) 
4.  Integrals (Definite Integrals, Contour Integrals, Antiderivatives, Cauchy Goursat Theorem, Cauchy Integral       
     Formula, Liouville's Theorem, Fundamental Theorem of Algebra, Maximum Modulus Principle) 
5.  Series (Sequences, Convergence of Series, Taylor Series, Laurent Series, Absolute and Uniform Convergence,   
     Power Series techniques) 
6.  Residues and Poles (Residues, Cauchy's Residue Theorem, Residue at Infinity, Zeros of Analytic Functions) 
 
We might also cover excerpts from "Applications of Residues), "Mapping by Elementary Functions", or some 
"Dynamic Systems", depending on how the course progresses. 
 
Elementary Functional Analysis 
Introduction, inner product spaces, Normed spaces, Hilbert and Banach spaces, Completions, Orthogonal 
expansions, Classical Fourier series, Dual spaces, Linear operators (Ch 7) February 3. Dual spaces (Ch 6) 
February 8. Linear operators, Compact operators, Sturm-Liouville systems, Green’s functions, 
Eigenfunction expansions. 
 
Real Analysis I 
Calculus of one and several variables, the Implicit and Inverse Function Theorems, pointwise and uniform 
convergence of sequences of functions, integration and differentiation of sequences, the Weierstrass 
Approximation Theorem, Lebesgue measure and integration on the real line, Measurable sets, Lebesgue 
measure, measurable functions, the Lebesgue integral and its relation to the Riemann integral, convergence 
theorems, functions of bounded variation, absolute continuity and differentiation of integrals, General measure 
and integration theory, Measure spaces, measurable functions, integration convergence theorems, signed 
measures, the Radon-Nikodym Theorem, product measures, Fubini’s Theorem, Tonelli’s Theorem. operators; 
applications to integral equations. 
 
Real Analysis II 
Families of functions, Equicontinuous families and the Arzela-Ascoli Theorem, the Stone-Weierstrass Theorem. 
Banach spaces, L^P- spaces and their conjugates, the Riesz-Fisher Theorem, the Riesz Representation Theorem 
for bounded linear functionals on L^P, C(X), the Riesz Representation Theorem for C(X), the Hahn-Banach 
Theorem, the Closed Graph and Open Mapping Theorems, the Principle of Uniform Boundedness, Alaoglu’s 
Theorem, Hilbert spaces, orthogonal systems, Fourier series, Bessel’s inequality, Parseval’s formula, 
convolutions, Fourier transform, distributions, Sobolev spaces, and Radon measures. 
 
Advanced Complex Analysis 
This is the first part of a series of lectures on advanced topics in Complex Analysis. By advanced, we mean topics 
that are not (or just barely) touched upon in a first course on Complex Analysis. The theme of the course is to 
study zeros of analytic (or holomorphic) functions and related theorems. These include the theorems of Hurwitz 
and Rouche, the Open Mapping theorem, the Inverse and Implicit Function theorems, applications of those 
theorems, behaviour at a critical point, analytic branches, constructing Riemann surfaces for functional inverses, 
Analytic continuation and Monodromy, Hyperbolic geometry and the Riemann Mapping theorem. 
 
Introduction to Numerical Analysis 
Numerical analysis is a discipline of mathematics concerned with the development of efficient methods for getting 
numerical solutions to complex mathematical problems. There are three sections to the numerical analysis. The 
first section of the subject deals with the creation of a problem-solving approach. The analysis of methods, which 
includes error analysis and efficiency analysis, is covered in the second section. The efficiency analysis shows us 
how fast we can compute the result, while the error analysis informs us how correct the result will be if we utilize 
the approach. The construction of an efficient algorithm to implement the approach as a computer code is the  
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subject’s third part. All three elements must be familiar to have a thorough understanding of the numerical analysis. 
Topics spanned root finding, interpolation, approximation of functions, integration, differential equations and direct 
and iterative methods in linear algebra. 
 
Applied Analysis 
Interior Point Methods: exposes students to the modern IPM theory with some applications, to the extent that at the 
end of the course a student should be able to implement a basic IPM algorithm. 
 
Theoretical Numerical Analysis: provides the theoretical underpinnings for the analysis of modern numerical 
methods, covering topics such as linear operators on normed spaces, approximation theory, nonlinear equations in 
Banach spaces, Fourier analysis, Sobolev spaces and weak formulations of elliptic boundary value problems, with 
applications to finite difference, finite element and wavelet methods. 
 
Differential Equations: essential ideas relating to the analysis of differential equations from a functional analysis 
point of view. General topics include Hilbert spaces and the Lax-Milgram’s theorem, variational formulation of 
boundary value problems, finite element methods, Sobolev spaces, distributions, and pseudo-differential operators. 
 
Functional Analysis  
This course is a graduate level course in functional analysis. Classically, functional analysis is the study of infinite 
dimensional vector spaces of functions and linear operators between them. This class deals with relevant function 
spaces (normed vector spaces, Banach and Hilbert spaces), bounded linear operators on normed vector spaces, 
fundamental principles of functional analysis (i.e., Han-Banach Theorem, Uniform Boundedness Principle, Open 
Mapping Theorem and Closed Graph Theorem) and their applications, spectral theory of compact linear operators 
and spectral theory of compact self-adjoint operators. The goal of the course is to help students who pursue advanced 
studies in mathematics and related fields to lay a solid foundation in functional analysis. We will cover chapters 1-9 
in the textbook. 
 
Fourier Analysis 
Half of the subject  of  this is devoted to the theory of the Lebesgue integral with applications to probability, and the 
other half to Fourier series and Fourier integrals. The task in the first half of the course is to introduce Lebesgue 
measure and establish properties of the Lebesgue integral. Our textbook (Adams and Guillemin) introduces 
Lebesgue measure using motivation and examples from probability theory. After we have developed probability 
theory on Bernoulli sequences, using a corresponding with Lebesgue measure on the unit interval, we will discuss 
the Lebesgue integral and some Fourier analysis. Then we will use some Fourier analysis to prove more theorems in 
probability. By the end of the semester we will have all the tools to discuss the continuum limit of a (suitably scaled) 
random walk, namely Brownian motion. 
One of the main goals this course is to establish rules for the limiting behavior of functions so that we can deal with 
functions with as much confidence as we do real or complex numbers. An equally important motivation (that will 
only become clear in the second half) is that the systematic study of Fourier series requires the Lebesgue integral. 
The square mean convergence of Fourier series and Parseval’s formula cannot be stated accurately in proper 
generality without the Lebesgue integral and Lebesgue integrable functions. 
 
Elementary Harmonic Analysis 
In the first part of the course, we will study basic concepts in Harmonic Analysis, specifically, interpolation 
theorems, Hardy-Littlewood maximal function and the Hardy-Littlewood-Sobolev fractional integration theorem. 
This will be followed by the Littlewood-Paley theory and their applications in r-variational estimates as well as the 
Calderon-Zygmund theory of singular integrals and Radon operators. In the second part of the course we will study 
restriction theorems and Kakeya maximal functions, we will also construct the Besicovitch set. This will be a starting 
point of the decoupling theory, which will be used to prove the Vinogadov mean value conjecture from number 
theory. Finally, we will prove the Carleson theorem, which asserts that partial sums of Fourier series of a square 
integrable function  converge pointwise almost everywhere. 
 
 


