Course Description of General Topology

The subject of topoLogy is of interest in its own right, and it also serves to lay the foundations for future study in analysis, in geometry, and in algebraic topology. There is no universal agreement among mathematicians as to what a first course in topology should include; there are many topics that are appropriate to such a course, and not all are equally relevant to these differing purposes. In the choice of material to be treated, I have tried to strike a balance among the various points of view.

This course, consisting of the first eight chapters of the following book written by James R. Munkres, is devoted to the subject commonly called general topology. The first four chapters deal with the body of material that, in my opinion, should be included in any introductory topology course worthy of the name. This may be considered the "irreducible core" of the subject, treating as it does set theory, topological spaces, connectedness, compactness (through compactness of finite products), and the countability and separation axioms (through the Urysohn metrization theorem). The remaining four chapters of Part I explore additional topics; they are essentially independent of one another, depending on only the core material of Chapters 1-4. The instructor may take them up in any order he or she chooses.

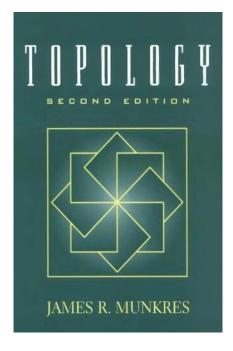


Table of Contents is given in the next three pages

Contents

Part I GENERAL TOPOLOGY

Chapte	ter 1 Set Theory and Logic	 		 3
1	Fundamental Concepts	 	.	 4
2	Functions	 		 15
3	Relations	 		 21
4	The Integers and the Real Numbers	 		 30
5	Cartesian Products	 		 36
6	Finite Sets	 		 39
7	Countable and Uncountable Sets	 		 44
*8	The Principle of Recursive Definition	 		 52
9	Infinite Sets and the Axiom of Choice	 		 57
10	Well-Ordered Sets	 		 62
*11	The Maximum Principle	 		 68
*Sup	pplementary Exercises: Well-Ordering	 		 72

Chapt	er 2 Topological Spaces and Continuous Functions	75
12	Topological Spaces	
13	Basis for a Topology	. 78
14	The Order Topology	. 84
15	The Product Topology on $X \times Y$. 86
16	The Subspace Topology	. 88
17	Closed Sets and Limit Points	. 92
18	Continuous Functions	. 102
19	The Product Topology	. 112
20	The Metric Topology	. 119
21	The Metric Topology (continued)	. 129
*22	The Quotient Topology	. 136
*Sup	oplementary Exercises: Topological Groups	
Chapt	er 3 Connectedness and Compactness	. 147
23	Connected Spaces	
24	Connected Subspaces of the Real Line	
*25	Components and Local Connectedness	
26	Compact Spaces	
27	Compact Subspaces of the Real Line	
28	Limit Point Compactness	
29		
*Sup	pplementary Exercises: Nets	
Chant	er 4 Countability and Separation Axioms	189
30	The Countability Axioms	
31	The Separation Axioms	
32	Normal Spaces	
33	The Urysohn Lemma	207
34	The Urysohn Metrization Theorem	
*35	The Tietze Extension Theorem	
*36	Imbeddings of Manifolds	
	plementary Exercises: Review of the Basics	
Chapte	er 5 The Tychonoff Theorem	230
37	The Tychonoff Theorem	
38	The Stone-Čech Compactification	237
Chapte	er 6 Metrization Theorems and Paracompactness	243
39	Local Finiteness	
40	The Nagata-Smirnov Metrization Theorem	
41	Paracompactness	
42	The Smirnov Metrization Theorem	

Chapte	r 7 Complete Metric Spaces and Function Spaces	263
43	Complete Metric Spaces	264
*44	A Space-Filling Curve	271
45	Compactness in Metric Spaces	275
46	Pointwise and Compact Convergence	281
47	Ascoli's Theorem	290
Chapte	r 8 Baire Spaces and Dimension Theory	294
48	Baire Spaces	295
*49	A Nowhere-Differentiable Function	300
50	Introduction to Dimension Theory	304
*Sup	plementary Exercises: Locally Euclidean Spaces	316