
 

The subject of topoLogy is of interest in its own right, and it also serves to lay the foundations for future study 
in analysis, in geometry, and in algebraic topology. There is no universal agreement among mathematicians as 
to what a first course in topology should include; there are many topics that are appropriate to such a course, 
and not all are equally relevant to these differing purposes. In the choice of material to be treated, 
I have tried to strike a balance among the various points of view. 
 
This  course, consisting of the first eight  chapters  of  the   following book  written  by  James  R. Munkres, is 
devoted to the subject commonly called general topology. The first four chapters deal with the body of material 
that, in my opinion, should be included in any introductory topology course worthy of the name. This may be 
considered the "irreducible core" of the subject, treating as it does set theory, topological spaces, 
connectedness, compactness (through compactness of finite products), and the countability and separation 
axioms (through the Urysohn metrization theorem). The remaining four chapters of Part I explore additional 
topics; they are essentially independent of one another, depending on only the core material of Chapters 1-4. 
The instructor may take them up in any order he or she chooses. 
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