Complex Analysis Course Description

Course outline.

The course is a rigorous introduction to Complex Analysis, one of the most exciting fields of modern Mathematics. We will begin with a review of Complex numbers and their Geometric and Algebraic properties. After that, we will start investigating holomorphic functions, including polynomials, rational functions, and trigonometric functions. We will carefully discuss the differences between Real and Complex differentiation. Following that, we will take a Complex Analysis approach to line integration and derive the fundamental theorem of Complex Analysis, the Cauchy Theorem. This theorem has a number of dramatic consequences: the Cauchy representation fomula, Fundamental Theorem of Algebra, Maximum Modulus Principle, and many others. Developing the theory, we will study Residual Calculus and Harmonic functions. The culmination of the course will be proof of the celebrated Rieman mapping theorem, which asserts that any simply connected planar domains (i.e. "a domain without holes") which is not the whole plane can be bijectively mapped by a holomorphic map to the unit disk.

Table Of Contents : Look in the next pages

Contents

Foreword		vii
Intr	roduction	XV
Cha	apter 1. Preliminaries to Complex Analysis	1
1	Complex numbers and the complex plane	1
	1.1 Basic properties	1
	1.2 Convergence	5
	1.3 Sets in the complex plane	5
2	Functions on the complex plane	8
	2.1 Continuous functions	8
	2.2 Holomorphic functions	8
	2.3 Power series	14
3	Integration along curves	18
4	Exercises	24
Cha	apter 2. Cauchy's Theorem and Its Applications	32
1	Goursat's theorem	34
2	Local existence of primitives and Cauchy's theorem in a	07
9		37
3	Evaluation of some integrals	41
4 F	Cauchy's integral formulas	40 52
Э	Further applications	03 52
	5.1 Morera's theorem 5.2 Sequences of holomorphic functions	00 52
	5.2 Helemorphic functions defined in terms of integrals	55
	5.4 Schwarz reflection principle	57
	5.5 Bungo's approximation theorem	57 60
6	Exercises	64
7	Problems	67
Cha	apter 3. Meromorphic Functions and the Logarithm	71
1	Zerog and polog	79
1	The regidue formula	14 76
7	2.1 Examples	70
ર	2.1 Examples Singularities and meromorphic functions	11 83
J 	The argument principle and applications	80
-1	The argument principle and applications	09

5	Homotopies and simply connected domains	93
6	The complex logarithm	97
7	Fourier series and harmonic functions	101
8	Exercises	103
9	Problems	108
Cha	pter 4. The Fourier Transform	111
1	The class \mathfrak{F}	113
2	Action of the Fourier transform on \mathfrak{F}	114
3	Paley-Wiener theorem	121
4	Exercises	127
5	Problems	131
Chapter 5. Entire Functions		134
1	Jensen's formula	135
2	Functions of finite order	138
3	Infinite products	140
	3.1 Generalities	140
	3.2 Example: the product formula for the sine function	142
4	Weierstrass infinite products	145
5	Hadamard's factorization theorem	147
6	Exercises	153
7	Problems	156
Cha	pter 6. The Gamma and Zeta Functions	159
1	The gamma function	160
	1.1 Analytic continuation	161
	1.2 Further properties of Γ	163
2	The zeta function	168
	2.1 Functional equation and analytic continuation	168
3	Exercises	174
4	Problems	179
Cha	pter 7. The Zeta Function and Prime Number The-	
0	rem	181
1	Zeros of the zeta function	182
	1.1 Estimates for $1/\zeta(s)$	187
2	Reduction to the functions ψ and ψ_1	188
-	2.1 Proof of the asymptotics for ψ_1	194
Note on interchanging double sums		197
3	Exercises	199

4 Problems 203 Chapter 8. Conformal Mappings 205 1 Conformal equivalence and examples 206 1.1 The disc and upper half-plane 208 1.2 Further examples 209 1.3 The Dirichlet problem in a strip 212 2 The Schwarz lemma; automorphisms of the disc and upper half-plane 218 2.1 Automorphisms of the disc 219 2.2 Automorphisms of the disc 219 2.2 Automorphisms of the disc 219 3 The Riemann mapping theorem 224 3.1 Necessary conditions and statement of the theorem 224 3.2 Montel's theorem 225 3.3 Proof of the Riemann mapping theorem 228 4 Conformal mappings onto polygons 231 4.1 Some examples 231 4.2 The Schwarz-Christoffel integral 235 4.3 Boundary behavior 238 4.4 The mapping formula 241 4.5 Return to elliptic integrals 245 5 Exercises<	CONTENTS		xiii
Chapter 8. Conformal Mappings2051Conformal equivalence and examples2061.1The disc and upper half-plane2081.2Further examples2091.3The Dirichlet problem in a strip2122The Schwarz lemma; automorphisms of the disc and upper half-plane2182.1Automorphisms of the disc2192.2Automorphisms of the upper half-plane2213The Riemann mapping theorem2243.1Necessary conditions and statement of the theorem2243.2Montel's theorem2253.3Proof of the Riemann mapping theorem2284Conformal mappings onto polygons2314.1Some examples2314.2The Schwarz-Christoffel integral2354.3Boundary behavior2384.4The mapping formula2414.5Return to elliptic integrals2455Exercises2486Problems254Chapter 9. An Introduction to Elliptic Functions1Elliptic functions2621.1Liouville's theorems2641.2The Weierstrass φ function2662The modular character of elliptic functions and Eisenstein series2732.1Eisenstein series2732.2Eisenstein series and divisor functions2763Exercises2784Problems281Chapter 10. Applications of Th	4	Problems	203
1Conformal equivalence and examples2061.1The disc and upper half-plane2081.2Further examples2091.3The Dirichlet problem in a strip2122The Schwarz lemma; automorphisms of the disc and upper half-plane2182.1Automorphisms of the disc2192.2Automorphisms of the upper half-plane2213The Riemann mapping theorem2243.1Necessary conditions and statement of the theorem2253.3Proof of the Riemann mapping theorem2284Conformal mappings onto polygons2314.1Some examples2314.2The Schwarz-Christoffel integral2354.3Boundary behavior2384.4The mapping formula2414.5Return to elliptic integrals2455Exercises2486Problems254Chapter 9. An Introduction to Elliptic Functions1Elliptic functions2621.1Liouville's theorems2641.2The Weierstrass φ function2662The modular character of elliptic functions and Eisenstein series2732.2Eisenstein series2732.1Eisenstein series2732.2Eisenstein series2732.3Eisenstein series and divisor functions2763Exercises2784Problems281Chapter 10. Applications of T	Cha	pter 8. Conformal Mappings	205
1.1The disc and upper half-plane2081.2Further examples2091.3The Dirichlet problem in a strip2122The Schwarz lemma; automorphisms of the disc and upper half-plane2182.1Automorphisms of the disc2192.2Automorphisms of the upper half-plane2213The Riemann mapping theorem2243.1Necessary conditions and statement of the theorem2243.2Montel's theorem2253.3Proof of the Riemann mapping theorem2284Conformal mappings onto polygons2314.1Some examples2314.2The Schwarz-Christoffel integral2354.3Boundary behavior2384.4The mapping formula2414.5Return to elliptic integrals2455Exercises2486Problems254Chapter 9. An Introduction to Elliptic Functions2.1Liouville's theorems2661Elliptic functions2621.1Liouville's theorems2662The modular character of elliptic functions and Eisenstein2732.2Eisenstein series2732.3Eisenstein series and divisor functions2732.4Problems281Chapter 10. Applications of Theta Functions2Generating functions2933The theorem sabout sums of squares2933The theorem sabout sums	1	Conformal equivalence and examples	206
1.2Further examples2091.3The Dirichlet problem in a strip2122The Schwarz lemma; automorphisms of the disc and upper half-plane2182.1Automorphisms of the disc2192.2Automorphisms of the upper half-plane2213The Riemann mapping theorem2243.1Necessary conditions and statement of the theorem2253.3Proof of the Riemann mapping theorem2284Conformal mappings onto polygons2314.1Some examples2314.2The Schwarz-Christoffel integral2354.3Boundary behavior2384.4The mapping formula2414.5Return to elliptic integrals2455Exercises2486Problems254Chapter 9. An Introduction to Elliptic Functions1Elliptic functions2621.1Liouville's theorems2641.2The Weierstrass \wp function2662The modular character of elliptic functions and Eisenstein2732.1Eisenstein series2732.2Eisenstein series2784Problems281Chapter 10. Applications of Theta Functions2Generating functions2933The theorems about sums of squares2933The theorems about sums of squares2933The two-squares theorem297		1.1 The disc and upper half-plane	208
1.3The Dirichlet problem in a strip2122The Schwarz lemma; automorphisms of the disc and upper half-plane2182.1Automorphisms of the disc2192.2Automorphisms of the upper half-plane2213The Riemann mapping theorem2243.1Necessary conditions and statement of the theorem2253.3Proof of the Riemann mapping theorem2284Conformal mappings onto polygons2314.1Some examples2314.2The Schwarz-Christoffel integral2354.3Boundary behavior2384.4The mapping formula2414.5Return to elliptic integrals2455Exercises2486Problems254Chapter 9. An Introduction to Elliptic Functions1Elliptic functions2621.1Liouville's theorems2641.2The Weierstrass \wp function2662The Weierstrass \wp function2732.1Eisenstein series2732.2Eisenstein series2732.1Eisenstein series2732.2Eisenstein series2784Problems281Chapter 10. Applications of Theta Functions281Product formula for the Jacobi theta function2841.1Further transformation laws2892Generating functions2893The theorems about sums of squares297 </td <td></td> <td>1.2 Further examples</td> <td>209</td>		1.2 Further examples	209
2 The Schwarz lemma; automorphisms of the disc and upper half-plane 218 2.1 Automorphisms of the disc 219 2.2 Automorphisms of the upper half-plane 221 3 The Riemann mapping theorem 224 3.1 Necessary conditions and statement of the theorem 224 3.2 Montel's theorem 225 3.3 Proof of the Riemann mapping theorem 228 4 Conformal mappings onto polygons 231 4.1 Some examples 231 4.2 The Schwarz-Christoffel integral 235 4.3 Boundary behavior 238 4.4 The mapping formula 241 4.5 Return to elliptic integrals 245 5 Exercises 248 6 Problems 261 1 Elliptic functions 262 1.1 Liouville's theorems 264 1.2 The Weierstrass \wp function 266 2.1 Eisenstein series 273 2.1 Eisenstein series 273 2.1 Eisenstein series and divisor funct		1.3 The Dirichlet problem in a strip	212
half-plane2182.1Automorphisms of the disc2192.2Automorphisms of the upper half-plane2213The Riemann mapping theorem2243.1Necessary conditions and statement of the theorem2243.2Montel's theorem2253.3Proof of the Riemann mapping theorem2284Conformal mappings onto polygons2314.1Some examples2314.2The Schwarz-Christoffel integral2354.3Boundary behavior2384.4The mapping formula2414.5Return to elliptic integrals2455Exercises2486Problems254Chapter 9. An Introduction to Elliptic Functions1Elliptic functions2621.1Liouville's theorems2641.2The Weierstrass & function2662The modular character of elliptic functions and Eisenstein2732.1Eisenstein series2732.2Eisenstein series2732.1Eisenstein series and divisor functions2763Exercises2784Problems281Chapter 10. Applications of Theta Functions1.1Further transformation laws2832Generating functions2833The theorems about sums of squares2933The theorems about sums of squares2963.1The two-squares theorem297	2	The Schwarz lemma; automorphisms of the disc and upper $% \mathcal{A}$	
2.1 Automorphisms of the disc 219 2.2 Automorphisms of the upper half-plane 221 3 The Riemann mapping theorem 224 3.1 Necessary conditions and statement of the theorem 224 3.1 Necessary conditions and statement of the theorem 224 3.1 Necessary conditions and statement of the theorem 224 3.2 Montel's theorem 225 3.3 Proof of the Riemann mapping theorem 228 4 Conformal mappings onto polygons 231 4.1 Some examples 231 4.2 The Schwarz-Christoffel integral 235 4.3 Boundary behavior 238 4.4 The mapping formula 241 4.5 Return to elliptic integrals 245 5 Exercises 248 6 Problems 254 Chapter 9. An Introduction to Elliptic Functions 1 Elliptic functions 262 1.1 Liouville's theorems 264 1.2 The Weierstrass & function 266 2 The modular char		half-plane	218
2.2 Automorphisms of the upper half-plane 221 3 The Riemann mapping theorem 224 3.1 Necessary conditions and statement of the theorem 224 3.2 Montel's theorem 225 3.3 Proof of the Riemann mapping theorem 228 4 Conformal mappings onto polygons 231 4.1 Some examples 231 4.2 The Schwarz-Christoffel integral 235 4.3 Boundary behavior 238 4.4 The mapping formula 241 4.5 Return to elliptic integrals 245 5 Exercises 248 6 Problems 254 Chapter 9. An Introduction to Elliptic Functions 1 Elliptic functions 262 1.1 Liouville's theorems 264 1.2 The Weierstrass \wp function 266 2 The modular character of elliptic functions and Eisenstein 373 2.1 Eisenstein series 273 2.2 Eisenstein series and divisor functions 276 3 Exercises		2.1 Automorphisms of the disc	219
3 The Riemann mapping theorem 224 3.1 Necessary conditions and statement of the theorem 224 3.2 Montel's theorem 225 3.3 Proof of the Riemann mapping theorem 228 4 Conformal mappings onto polygons 231 4.1 Some examples 231 4.2 The Schwarz-Christoffel integral 235 4.3 Boundary behavior 238 4.4 The mapping formula 241 4.5 Return to elliptic integrals 245 5 Exercises 248 6 Problems 251 Chapter 9. An Introduction to Elliptic Functions 1 Elliptic functions 262 1.1 Liouville's theorems 264 1.2 The Weierstrass \wp function 266 2 The modular character of elliptic functions and Eisenstein 373 series 273 2.1 Eisenstein series 273 2.1 Eisenstein series and divisor functions 276 3 3 Exercises 278 4 Problems		2.2 Automorphisms of the upper half-plane	221
3.1 Necessary conditions and statement of the theorem 224 3.2 Montel's theorem 225 3.3 Proof of the Riemann mapping theorem 228 4 Conformal mappings onto polygons 231 4.1 Some examples 231 4.2 The Schwarz-Christoffel integral 235 4.3 Boundary behavior 238 4.4 The mapping formula 241 4.5 Return to elliptic integrals 245 5 Exercises 248 6 Problems 254 Chapter 9. An Introduction to Elliptic Functions 1 Elliptic functions 262 1.1 Liouville's theorems 264 1.2 The Weierstrass \$\varphi\$ function 266 2 The modular character of elliptic functions and Eisenstein series 273 2.1 Eisenstein series 273 2.2 Eisenstein series and divisor functions 276 3 Exercises 278 4 Problems 281 Chapter 10. Applications of Theta Functions <tr< td=""><td>3</td><td>The Riemann mapping theorem</td><td>224</td></tr<>	3	The Riemann mapping theorem	224
3.2 Montel's theorem 225 3.3 Proof of the Riemann mapping theorem 228 4 Conformal mappings onto polygons 231 4.1 Some examples 231 4.2 The Schwarz-Christoffel integral 235 4.3 Boundary behavior 238 4.4 The mapping formula 241 4.5 Return to elliptic integrals 245 5 Exercises 248 6 Problems 254 Chapter 9. An Introduction to Elliptic Functions 1 Elliptic functions 262 1.1 Liouville's theorems 264 1.2 The Weierstrass & function 266 2.1 Eisenstein series 273 2.1 Eisenstein series 273 2.2 Eisenstein series and divisor functions 276 3 Exercises 278 4 Problems 281 Chapter 10. Applications of Theta Functions 1 Further transformation laws 289 2 Generating functions 293		3.1 Necessary conditions and statement of the theorem	224
3.3 Proof of the Riemann mapping theorem 228 4 Conformal mappings onto polygons 231 4.1 Some examples 231 4.2 The Schwarz-Christoffel integral 235 4.3 Boundary behavior 238 4.4 The mapping formula 241 4.5 Return to elliptic integrals 245 5 Exercises 248 6 Problems 254 Chapter 9. An Introduction to Elliptic Functions 1 Elliptic functions 262 1.1 Liouville's theorems 264 1.2 The Weierstrass \$\varphi\$ function 266 2 The modular character of elliptic functions and Eisenstein 273 2.1 Eisenstein series 273 2.2 Eisenstein series and divisor functions 276 3 Exercises 278 4 Problems 281 Chapter 10. Applications of Theta Functions 1 Purcher transformation laws 289 2 Generating functions 293 3		3.2 Montel's theorem	225
4 Conformal mappings onto polygons 231 4.1 Some examples 231 4.2 The Schwarz-Christoffel integral 235 4.3 Boundary behavior 238 4.4 The mapping formula 241 4.5 Return to elliptic integrals 245 5 Exercises 248 6 Problems 254 Chapter 9. An Introduction to Elliptic Functions 1 Elliptic functions 262 1.1 Liouville's theorems 264 1.2 The Weierstrass & function 266 2 The modular character of elliptic functions and Eisenstein series 273 2.1 Eisenstein series 273 2.2 Eisenstein series and divisor functions 276 3 Exercises 278 4 Problems 281 Chapter 10. Applications of Theta Functions 1 Further transformation laws 289 2 Generating functions 293 3 The theorems about sums of squares 296 3.1 The		3.3 Proof of the Riemann mapping theorem	228
4.1Some examples2314.2The Schwarz-Christoffel integral2354.3Boundary behavior2384.4The mapping formula2414.5Return to elliptic integrals2455Exercises2486Problems254Chapter 9. An Introduction to Elliptic Functions1Elliptic functions2621.1Liouville's theorems2641.2The Weierstrass & function2662The modular character of elliptic functions and Eisenstein2732.1Eisenstein series2732.2Eisenstein series2732.2Eisenstein series and divisor functions2763Exercises2784Problems281Chapter 10. Applications of Theta Functions1Further transformation laws2892Generating functions2933The theorems about sums of squares2963.1The two-squares theorem297	4	Conformal mappings onto polygons	231
4.2The Schwarz-Christoffel integral2354.3Boundary behavior2384.4The mapping formula2414.5Return to elliptic integrals2455Exercises2486Problems254Chapter 9. An Introduction to Elliptic Functions1Elliptic functions2611Elliptic functions2621.1Liouville's theorems2641.2The Weierstrass \wp function2662The modular character of elliptic functions and Eisenstein series2732.1Eisenstein series2732.2Eisenstein series and divisor functions2763Exercises2784Problems281Chapter 10. Applications of Theta Functions1.1Further transformation laws2892Generating functions2933The theorems about sums of squares2963.1The two-squares theorem297		4.1 Some examples	231
4.3 Boundary behavior 238 4.4 The mapping formula 241 4.5 Return to elliptic integrals 245 5 Exercises 248 6 Problems 254 Chapter 9. An Introduction to Elliptic Functions 261 1 Elliptic functions 262 1.1 Liouville's theorems 264 1.2 The Weierstrass φ function 266 2 The modular character of elliptic functions and Eisenstein series 273 2.1 Eisenstein series 273 2.2 Eisenstein series and divisor functions 276 3 Exercises 278 4 Problems 281 Chapter 10. Applications of Theta Functions 1 Product formula for the Jacobi theta function 284 1 Product formula for the Jacobi theta function 284 2 Generating functions 293 3 The theorems about sums of squares 296 3.1 The two-squares theorem 297		4.2 The Schwarz-Christoffel integral	235
4.4The mapping formula2414.5Return to elliptic integrals2455Exercises2486Problems254Chapter 9. An Introduction to Elliptic Functions1Elliptic functions2621.1Liouville's theorems2641.2The Weierstrass \wp function2662The modular character of elliptic functions and Eisenstein series2732.1Eisenstein series2732.2Eisenstein series and divisor functions2763Exercises2784Problems281Chapter 10. Applications of Theta Functions1Product formula for the Jacobi theta function2841.1Further transformation laws2892Generating functions2933The theorems about sums of squares2963.1The two-squares theorem297		4.3 Boundary behavior	238
4.5Return to elliptic integrals2455Exercises2486Problems254Chapter 9. An Introduction to Elliptic Functions1Elliptic functions2611Lilouville's theorems2641.2The Weierstrass \wp function2662The modular character of elliptic functions and Eisenstein series2732.1Eisenstein series2732.2Eisenstein series and divisor functions2763Exercises2784Problems281Chapter 10. Applications of Theta Functions1Product formula for the Jacobi theta function2841.1Further transformation laws2892Generating functions2933The theorems about sums of squares2963.1The two-squares theorem297		4.4 The mapping formula	241
5Exercises2486Problems254Chapter 9. An Introduction to Elliptic Functions2611Elliptic functions2621.1Liouville's theorems2641.2The Weierstrass \wp function2662The modular character of elliptic functions and Eisenstein2732.1Eisenstein series2732.2Eisenstein series and divisor functions2763Exercises2784Problems281Chapter 10. Applications of Theta Functions2831Product formula for the Jacobi theta function2841.1Further transformation laws2892Generating functions2933The theorems about sums of squares2963.1The two-squares theorem297		4.5 Return to elliptic integrals	245
6Problems254Chapter 9. An Introduction to Elliptic Functions2611Elliptic functions2621.1Liouville's theorems2641.2The Weierstrass & function2662The modular character of elliptic functions and Eisenstein series2732.1Eisenstein series2732.2Eisenstein series and divisor functions2763Exercises2784Problems281Chapter 10. Applications of Theta Functions2831Product formula for the Jacobi theta function2841.1Further transformation laws2892Generating functions2933The theorems about sums of squares2963.1The two-squares theorem297	5	Exercises	248
Chapter 9. An Introduction to Elliptic Functions2611Elliptic functions2621.1Liouville's theorems2641.2The Weierstrass & function2662The modular character of elliptic functions and Eisenstein series2732.1Eisenstein series2732.2Eisenstein series and divisor functions2763Exercises2784Problems281Chapter 10. Applications of Theta Functions2831Product formula for the Jacobi theta function2841.1Further transformation laws2892Generating functions2933The theorems about sums of squares2963.1The two-squares theorem297	6	Problems	254
1Elliptic functions2621.1Liouville's theorems2641.2The Weierstrass ℘ function2662The modular character of elliptic functions and Eisenstein273series2732.1Eisenstein series2732.2Eisenstein series and divisor functions2763Exercises2784Problems281Chapter 10. Applications of Theta Functions1Product formula for the Jacobi theta function2841.1Further transformation laws2892Generating functions2933The theorems about sums of squares2963.1The two-squares theorem297	Cha	apter 9. An Introduction to Elliptic Functions	261
1.1Liouville's theorems2641.2The Weierstrass \wp function2662The modular character of elliptic functions and Eisenstein273series2732.1Eisenstein series2732.2Eisenstein series and divisor functions2763Exercises2784Problems281Chapter 10. Applications of Theta Functions1Product formula for the Jacobi theta function2841.1Further transformation laws2892Generating functions2933The theorems about sums of squares2963.1The two-squares theorem297	1	Elliptic functions	262
1.2The Weierstrass φ function2662The modular character of elliptic functions and Eisenstein series2732.1Eisenstein series2732.2Eisenstein series and divisor functions2763Exercises2784Problems281Chapter 10. Applications of Theta Functions1Product formula for the Jacobi theta function2841.1Further transformation laws2892Generating functions2933The theorems about sums of squares2963.1The two-squares theorem297		1.1 Liouville's theorems	264
2The modular character of elliptic functions and Eisenstein series2732.1Eisenstein series2732.2Eisenstein series and divisor functions2763Exercises2784Problems281Chapter 10. Applications of Theta Functions1Product formula for the Jacobi theta function2841.1Further transformation laws2892Generating functions2933The theorems about sums of squares2963.1The two-squares theorem297		1.2 The Weierstrass \wp function	266
series2732.1 Eisenstein series2732.2 Eisenstein series and divisor functions2763 Exercises2784 Problems281Chapter 10. Applications of Theta Functions1 Product formula for the Jacobi theta function2841.1 Further transformation laws2892 Generating functions2933 The theorems about sums of squares2963.1 The two-squares theorem297	2	The modular character of elliptic functions and Eisenstein	
2.1Eisenstein series2732.2Eisenstein series and divisor functions2763Exercises2784Problems281Chapter 10. Applications of Theta Functions1Product formula for the Jacobi theta function2841.1Further transformation laws2892Generating functions2933The theorems about sums of squares2963.1The two-squares theorem297		series	273
2.2 Eisenstein series and divisor functions2763 Exercises2784 Problems281Chapter 10. Applications of Theta Functions1 Product formula for the Jacobi theta function2831.1 Further transformation laws2892 Generating functions2933 The theorems about sums of squares2963.1 The two-squares theorem297		2.1 Eisenstein series	273
3 Exercises2784 Problems281Chapter 10. Applications of Theta Functions2831 Product formula for the Jacobi theta function2841.1 Further transformation laws2892 Generating functions2933 The theorems about sums of squares2963.1 The two-squares theorem297		2.2 Eisenstein series and divisor functions	276
4Problems281Chapter 10. Applications of Theta Functions2831Product formula for the Jacobi theta function2841.1Further transformation laws2892Generating functions2933The theorems about sums of squares2963.1The two-squares theorem297	3	Exercises	278
Chapter 10. Applications of Theta Functions2831Product formula for the Jacobi theta function2841.1Further transformation laws2892Generating functions2933The theorems about sums of squares2963.1The two-squares theorem297	4	Problems	281
1Product formula for the Jacobi theta function2841.1Further transformation laws2892Generating functions2933The theorems about sums of squares2963.1The two-squares theorem297	Cha	pter 10. Applications of Theta Functions	283
1.1 Further transformation laws2892 Generating functions2933 The theorems about sums of squares2963.1 The two-squares theorem297	1	Product formula for the Jacobi theta function	284
2Generating functions2933The theorems about sums of squares2963.1The two-squares theorem297		1.1 Further transformation laws	289
3 The theorems about sums of squares2963.1 The two-squares theorem297	2	Generating functions	293
3.1 The two-squares theorem 297	3	The theorems about sums of squares	296
*		3.1 The two-squares theorem	297

CONTENTS	5
----------	---

	3.2 The four-squares theorem	304
4	Exercises	309
5	Problems	314
App	pendix A: Asymptotics	318
1	Bessel functions	319
2	Laplace's method; Stirling's formula	323
3	The Airy function	328
4	The partition function	334
5	Problems	341
App	pendix B: Simple Connectivity and Jordan Curve	
	Theorem	344
1	Equivalent formulations of simple connectivity	345
2	The Jordan curve theorem	351
	2.1 Proof of a general form of Cauchy's theorem	361
Not	Notes and References	
Bib	Bibliography	
\mathbf{Syn}	abol Glossary	373
Ind	ex	375