
Course Description of  
Probability and its Applications 

Probability means possibility. It is a branch of mathematics that deals with the occurrence of a random event. 
The value is expressed from zero to one. Probability has been introduced in Maths to predict how likely 
events are to happen. The meaning of probability is basically the extent to which something is likely to 
happen. This is the basic probability theory, which is also used in the probability distribution, where you will 
learn the possibility of outcomes for a random experiment. 
In mathematics, Probability is a measure of the likelihood of an event to occur. Many events cannot be 
predicted with total certainty. We can predict only the chance of an event to occur i.e. how likely they are to 
happen, using it. 

 In this course will give you the tools needed to understand data, science, philosophy, engineering, economics, 
and finance. You will learn not only how to solve challenging technical problems, but also how you can 
apply those solutions in everyday life. With examples ranging from medical testing to sports prediction, you 
will gain a strong foundation for the study of statistical inference, stochastic processes, randomized 
algorithms, and other subjects where probability is needed. 
 
How hard is probability  for you? 
Overall, probability tends to be a tricky class for most students when taking it for the first time. This is 
usually because it can be easy to think that you have calculated the probability of an event when it is not 
actually the true probability. 
 
There are actually a number of factors that will determine how hard probability is for you and there are a 
number of things that you can do to make it easier. 
• In probability, you will be learning about things such as basic combinatorics which involve sets and 

counting problems, less complex probability problems, expect value problems and problems that use 
probability distributions. There are a lot of things to learn in probability and this can cause difficulty for 
some students. 

• In addition, the problems can also be confusing. Often it will seem like you have calculated the correct 
probability for a problem when, in fact, you have not. The best way to prevent this is to work through lots 
of problems until you are able to see the correct method of solving common problems. 

• Also, probability does involve a lot of math. Depending on the prerequisites for the class, it will also make 
use of a lot of calculus and multi-variate calculus. The calculus problems tend to be of a similar difficulty 
to what you would find in a typical calculus class. If your class does not involve calculus, it will still 
likely involve a fair amount of mathematics so you will still need to study more than most other classes. 

• How difficult probability and most other college classes will be for you will depend largely on the 
professor that you take the class with. The professor will usually dictate the pace of the class, the scope of 
the exams, some will tell you to know everything from the text and others will give you a study guide. 

• It will also depend a lot on your own background, if you have taken lots of math classes before and have 
done well in them, you will probably do well in probability as well. 

 

Even though there are a number of reasons why probability can be a difficult course, there are a number of things that 
can make it less difficult. 
• First, probability is a topic that has clear real-world use cases. Being able to see the usefulness of the course 

usually helps to motivate students to study for the course and to do well in it. 
• Also, unlike other math-based topics, introductory probability is not usually proof heavy. This is good for most 

undergraduate and high school students since proof heavy contents tend to be the harder contents. 
• The most important thing that will greatly improve your probability   learning much easier, would be to prepare for 

it ahead of  time. You  will personally make probability less difficult, if you put most of it down to preparing for 
the course before actually taking it. 

 



Recommended Text Books 
According to a survey report, several students voted that mathematics is one of the toughest subjects, and probability 
is considered to be a complicated topic in which most of the students get puzzled. Therefore, we have analyzed that 
students need some kind of suggestions that can help the students to deal with probability problems. Here, we have 
listed some of the probability books that can help out the students. 
•  An Introduction to Probability Theory and Its Applications: By William Feller (1991) 
• The Probability Tutoring Book: By Carole Ash, Published By IEEE Press (1993) 
• Introduction to Probability Models  , Twelfth Edition  , Sheldon M. Ross, Published By AP.  (2019)
• A First Course in Probability,  By  Sheldon  Ross, Global Edition, (2020) 

 
NOTE: In this website our tutors teach the  contents  of  the text book "  Introduction  to  Probability  Models,  Twelfth

 Edition,  Sheldon  M.  Ross,  Published  By  AP. (2019)" to their students. The Preface and Table of contents of this book 
Are given in the next pages.  



Preface

This text is intended as an introduction to elementary probability theory and stochas-
tic processes. It is particularly well suited for those wanting to see how probability
theory can be applied to the study of phenomena in fields such as engineering, com-
puter science, management science, the physical and social sciences, and operations
research.

It is generally felt that there are two approaches to the study of probability theory.
One approach is heuristic and nonrigorous and attempts to develop in the student an
intuitive feel for the subject that enables him or her to “think probabilistically.” The
other approach attempts a rigorous development of probability by using the tools of
measure theory. It is the first approach that is employed in this text. However, because
it is extremely important in both understanding and applying probability theory to be
able to “think probabilistically,” this text should also be useful to students interested
primarily in the second approach.

New to This Edition

The twelfth edition includes new text material, examples, and exercises in almost ev-
ery chapter. Newly added Sections begin in Chapter 1 with Section 1.7, where it is
shown that probability is a continuous function of events. The new Section 2.8 proves
the Borel–Cantelli lemma and uses it as the basis of a proof of the strong law of large
numbers. Subsection 5.2.5 introduces the Dirichlet distribution and details its rela-
tionship to exponential random variables. Notable also in Chapter 5 is a new approach
for obtaining results for both stationary and non-stationary Poisson processes. The
biggest change in the current edition, though, is the addition of Chapter 12 on cou-
pling methods. Its usefulness in analyzing stochastic systems is indicated throughout
this chapter.

Course

Ideally, this text would be used in a one-year course in probability models. Other
possible courses would be a one-semester course in introductory probability theory
(involving Chapters 1–3 and parts of others) or a course in elementary stochastic
processes. The textbook is designed to be flexible enough to be used in a variety of
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possible courses. For example, I have used Chapters 5 and 8, with smatterings from
Chapters 4 and 6, as the basis of an introductory course in queueing theory.

Examples and Exercises

Many examples are worked out throughout the text, and there are also a large number
of exercises to be solved by students. More than 100 of these exercises have been
starred and their solutions provided at the end of the text. These starred problems can
be used for independent study and test preparation. An Instructor’s Manual, containing
solutions to all exercises, is available free to instructors who adopt the book for class.

Organization

Chapters 1 and 2 deal with basic ideas of probability theory. In Chapter 1 an axiomatic
framework is presented, while in Chapter 2 the important concept of a random variable
is introduced. Section 2.6.1 gives a simple derivation of the joint distribution of the
sample mean and sample variance of a normal data sample. Section 2.8 gives a proof
of the strong law of large numbers, with the proof assuming that both the expected
value and variance of the random variables under consideration are finite.

Chapter 3 is concerned with the subject matter of conditional probability and con-
ditional expectation. “Conditioning” is one of the key tools of probability theory, and
it is stressed throughout the book. When properly used, conditioning often enables us
to easily solve problems that at first glance seem quite difficult. The final section of
this chapter presents applications to (1) a computer list problem, (2) a random graph,
and (3) the Polya urn model and its relation to the Bose–Einstein distribution. Sec-
tion 3.6.5 presents k-record values and the surprising Ignatov’s theorem.

In Chapter 4 we come into contact with our first random, or stochastic, process,
known as a Markov chain, which is widely applicable to the study of many real-world
phenomena. Applications to genetics and production processes are presented. The
concept of time reversibility is introduced and its usefulness illustrated. Section 4.5.3
presents an analysis, based on random walk theory, of a probabilistic algorithm for
the satisfiability problem. Section 4.6 deals with the mean times spent in transient
states by a Markov chain. Section 4.9 introduces Markov chain Monte Carlo methods.
In the final section we consider a model for optimally making decisions known as a
Markovian decision process.

In Chapter 5 we are concerned with a type of stochastic process known as a count-
ing process. In particular, we study a kind of counting process known as a Poisson
process. The intimate relationship between this process and the exponential distri-
bution is discussed. New derivations for the Poisson and nonhomogeneous Poisson
processes are discussed. Examples relating to analyzing greedy algorithms, minimiz-
ing highway encounters, collecting coupons, and tracking the AIDS virus, as well as
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material on compound Poisson processes, are included in this chapter. Section 5.2.4
gives a simple derivation of the convolution of exponential random variables.

Chapter 6 considers Markov chains in continuous time with an emphasis on birth
and death models. Time reversibility is shown to be a useful concept, as it is in the
study of discrete-time Markov chains. Section 6.8 presents the computationally im-
portant technique of uniformization.

Chapter 7, the renewal theory chapter, is concerned with a type of counting process
more general than the Poisson. By making use of renewal reward processes, limit-
ing results are obtained and applied to various fields. Section 7.9 presents new results
concerning the distribution of time until a certain pattern occurs when a sequence of
independent and identically distributed random variables is observed. In Section 7.9.1,
we show how renewal theory can be used to derive both the mean and the variance of
the length of time until a specified pattern appears, as well as the mean time until
one of a finite number of specified patterns appears. In Section 7.9.2, we suppose
that the random variables are equally likely to take on any of m possible values, and
compute an expression for the mean time until a run of m distinct values occurs. In
Section 7.9.3, we suppose the random variables are continuous and derive an expres-
sion for the mean time until a run of m consecutive increasing values occurs.

Chapter 8 deals with queueing, or waiting line, theory. After some preliminaries
dealing with basic cost identities and types of limiting probabilities, we consider ex-
ponential queueing models and show how such models can be analyzed. Included in
the models we study is the important class known as a network of queues. We then
study models in which some of the distributions are allowed to be arbitrary. Included
are Section 8.6.3 dealing with an optimization problem concerning a single server,
general service time queue, and Section 8.8, concerned with a single server, general
service time queue in which the arrival source is a finite number of potential users.

Chapter 9 is concerned with reliability theory. This chapter will probably be of
greatest interest to the engineer and operations researcher. Section 9.6.1 illustrates a
method for determining an upper bound for the expected life of a parallel system of
not necessarily independent components and Section 9.7.1 analyzes a series structure
reliability model in which components enter a state of suspended animation when one
of their cohorts fails.

Chapter 10 is concerned with Brownian motion and its applications. The theory
of options pricing is discussed. Also, the arbitrage theorem is presented and its rela-
tionship to the duality theorem of linear programming is indicated. We show how the
arbitrage theorem leads to the Black–Scholes option pricing formula.

Chapter 11 deals with simulation, a powerful tool for analyzing stochastic mod-
els that are analytically intractable. Methods for generating the values of arbitrarily
distributed random variables are discussed, as are variance reduction methods for
increasing the efficiency of the simulation. Section 11.6.4 introduces the valuable
simulation technique of importance sampling, and indicates the usefulness of tilted
distributions when applying this method.

Chapter 12 introduces the concept of coupling and shows how it can be effectively
employed in analyzing stochastic systems. Its use in showing stochastic order relations
between random variables and processes—such as showing that a birth and death pro-
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cess is stochastically increasing in its initial state—is illustrated. It is also shown how
coupling can be of use in bounding the distance between distributions, in obtaining
stochastic optimization results, in bounding the error of Poisson approximations, and
in other areas of applied probability.
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