
Elementary Numerical Analysis

The field of numerical analys is, broadly speaking, is concerned with obtaining approximate solutions to mathematical problems that can be implemented on a computer. The theory of approximation can be surprisingly deep and elegant, given the messiness of the problems it seeks to solve. Under the wide umbrella of the subject is both pure analysis and mor epractical computational work. Some examples include:

- Theory(the analysis)
 - Convergence (limits of sequences that approach the true solution)
 - Finite-dimensional spaces for approximation
 - Discrete analogues of continuous processes
- Applied (some where in between)
 - ° Derivation of (practical) numerical methods
 - Intuition for interpreting results, measuring error
 - Adapting / generalizing methods to get desired properties
- Implementation (the numerical)
 - Translating methods to actual code
 - Efficient implementation
 - Developing packages for computing(COMSOL,Matlab,Retc.)

In this course, we focus more on the first two aspects and address the last one in less depth. Hopefully, you will be convinced by the end that an understanding of the underlying mathematics is in valuable, even when one is concerned with practical results.

Chapter 1: Basic Concepts and Computer Arithmetic	1-19
1.1 Introduction	1
1.2 Some Basic Concepts	1
1.2.1 Taylor Series for Functions of a Single Variable	1
1.2.2. Infinitely Differentiable Functions	3
1.2.3Mean Value Theorem	4
1.2.4 Rolle's Theorem	4
1.2.5 Intermediate Value Theorem	4
1.2.6 Differentiable Functions	4
1.3 Computer Arithmetic	5
1.3.1 Floating-Point Number	5
1.3.2 The Representation of Fractions	7
1.3.3 Sources of Error	7
1.3.4 Errors of Numerical Approximations	8
1.3.4.1 Truncation Errors	9
1.3.4.2 Rounding and Chopped Error	9
1.3.4.3 Round-of Errors	10
1.3.4.4 Inherent Error	11
1.4 Measuring Errors	11
1.4.1 True and Relative Errors	11
1.4.2 Approximate Error and Relative Approximate Error	13
1.5 Numerical Instability	15
1.6 Big O and Small o Notation	16
EXERCISES 1	18

IV

Cha	pter2: Solutions of Equations in one Variable	20-74	
2.1	Introduction	20	
2.2	Locating the Oosition of Roots (Programming Method)	20	
2.3	Numerical Methods	22	
	2.3.1 Bisection Method	22	
	2.3.2 False position method(Regula Falsi Method)	27	
	2.3.3 Secant Method	29	
	2.3.4 Newton-Raphson Method	33	
	2.3.5 Chybeshev method	40	
	2.3.6 Fixed Point Method	41	
	2.3.7 Aitkin Method	49	
	2.3.8 Müller's Method	50	
	2.3.9 Horner Algorithm	53	
	2.3.10 Bairstow's Method	56	
	2.3.11Rostam-Kawa Methods	60	
	2.3.12Rostam-Shno Methods	67	
	Exercises 2	71	
Chapter 3: Solving linear System of Equations			
3.1	Introduction	75	
3.2	Direct Method	75	
	3.2.1 Gauss Elimination	76	
	3.2.2 Gauss Elimination with Partial Pivoting	79	
	3.2.3 LU Factorization Method (Doolittle factorization)	80	
	3.2.4 Cholesky Factorization	84	
3.31	86		
3.4	Indirect method (or Iterative methods)	100	
	3.4.1. Jacobi Method	101	
	3.4.2.Gauss-Seidel Method	107	

Exercises 3	112
Chapter 4: Solving System of Non-Linear Equations	114-125
4.1 Introduction	114
4.2 Numerical Methods	114
4.2.1 Fixed-Point Iteration	114
4.2.2 Newton-Raphson Method	119
4.2.3 Modified Newton-Raphson Method	123
Exercise 4	125
Chapter 5: Interpolation and Numerical Differentiation	126-177
5.1 Introduction	126
5.2 The Finite Difference Calculus	126
5.2.1. Shifting Operator (E)	127
5.2.2. Forward Difference Operator (Δ)	127
5.2.3. Backward Difference Operator (∇)	130
5.2.4. Central Deference Operator (δ)	130
5.2.5.Average Operator (μ)	131
5.2.6 Divided Difference Operator (Δ)	132
5.3 Interpolation	133
5.3.1Interpolation Problem	134
5.3.1.1 Lagrange Interpolation Polynomial	134
5.3.1.2 Divided Difference Interpolation Formula	140
5.4 Interpolation at Equally spaced nodes	145
5.4.1 Newton Forward Differences Interpolation Formula	145
5.4.2 Newton Backward Differences Interpolation Formula	149
5.4.3 Bessel's Interpolation Formula	151
5.5 Inverse Interpolation	153
5.6 Numerical Differentiation	155
5.6.1 Differentiation of Continuous Functions	155

5.6.2 Forward Difference Approximation of the First Derivative	156
5.6.3 Backward Difference Approximation of the First Derivative	158
5.6.4 Forward Difference Approximation from Taylor Series	160
5.6.5 Finite Difference Approximation of Higher Derivatives	164
5.6.6 Differentiation of Discrete Functions	167
Exercises 5	173
Chapter 6: Spline Approximation	178-206
6.1 Introduction	178
6.2 Interpolation by Spline Function	178
6.2.1Fist Degree Spline	179
6.2.2 Spline of Degree two (Quadratic Spline)	181
6.2.3 Natural Cubic Spline	184
6.3 Lacunary Interpolation by Splines Function	189
6.3.1 Quintic Spline	190
6.3.2 Sixth Degree Spline	192
6.3.3 Seventh Degree Spline	202
6.3.4 Ninth Degree Spline Function	204
Exercises 6	206
Chapter 7: Least square and Curve fitting	207-241
7.1 Introduction	207
7.2 linear Least Square	207
7.3 Nonlinear Least Square	219
7.3.1 Exponential Model	219
7.3.2 Growth Model	224
7.3.3 Polynomial Models	2.2.7
7.4. Transforming the Data to use Linear Least Square	

7.4.1 Exponential Model

7.4.2 Logarithmic Functions	233
7.4.3 Power Functions	235
7.4.4 Growth Model	238
Exercises 7	239
Chapter 8: Numerical Integrations	242-300
8.1 Introduction	242
8.2 Trapezoidal Rule of Integration	242
8.2.1 Derivation of the Trapezoidal Rule	244
8.2.2 Multiple-Segment Trapezoidal Rule	248
8.2.3 Error in Multiple-segment Trapezoidal Rule	254
8.3 Simpson's 1/3 Rule	256
8.3.1: Error in Multiple-Segment Simpson's 1/3 rule	263
8.4 Simpson 3/8 Rule for Integration	264
8.5 Richardson's Extrapolation Formula for Trapezoidal Rule	269
8.6 Romberg Integration	271
8.7 Gauss Quadrature Rule of Integration	276
8.7.1 Derivation of two-Point Gauss Quadrature Rule	277
8.7.2 Higher Point Gauss Quadrature Formulas	280
8.7.3 Arguments and Weighing Factors for n-Point Gauss Quadra	ture Rules
	281
8.8 Gauss Legendre Integration Methods	290
8.9 Gauss-Chebyshev Integration Methods	294
8.10 Gauss-Hermite Integration Methods	296
Exercises 8	299
Chapter 9: Numerical Solutions of Ordinary Differential Equations	301-353
9.1 Introduction	301
9.2 Euler's Method for Ordinary Differential Equations	
9.2.1 Derivation of Euler's Method	
9.3 Modified Euler Method	

9.4 Taylor's Series Method	310	
9.5 Runge-Kutta 2 nd Order Method	312	
9.5.1 Runge-Kutta 2 nd Order Method	313	
9.5.2 Runge-Kutta 4 th Order Method	318	
9.6 Finite Difference Method	324	
9.7 Shooting Method	338	
9.8 Predictor-Corrector Methods	345	
9.8.1 Adams-Moulton Predictor-Corrector Method	345	
Exercises 9	351	
Chapter 10: Solving Higher Order Ordinary Differential Equations	354-369	
10.1 Euler's and Runge-Kutta methods for Higher Order Ordinary Differential		
Equations (ODEs)	354	
10.2 Lacunary Interpolation Methods for Higher order ODEs	359	
10.2.1 Ninth Degree Spline Method for Solving System of ODE's	359	
10.2.2 Fifth Degree Spline Method for Solving Initial Value Proble	ems 365	