
The  field  of  numerical  analys  is,  broadly  speaking,  is  concerned  with  obtaining  approximate  solutions  to  
mathematical   problems  that  can  be  implemented  on  a computer.  The  theory  of  approximation  can  be  surprisingly

 deep  and  elegant,  given  the m  essiness  of  the  problems  it  seeks  to solve.  Under  the  wide  umbrella  of  the  subject  
 is  both  pure  analysis  and  mor  epractical computational  work.  Some  examples include:  

 • Theory(the analysis)                                                                                                                                                                                                                                                                                                                                                                                                  
  

 
 ◦ Convergence  (limits  of  sequences  that  approach  the  true solution)                                                                                                                                                                                                                                                                                                                       
  ◦  Finite-dimensional  spaces  for approximation                                                                                                                                                                                                                                                                                                                                                         
 ◦  Discrete  analogues  of  continuous processes 

 • Applied  (some  where  in between) 
 

                                                                                                                                                                                                                                                                                                                                                                            
  ◦  Derivation  of  (practical)  numerical methods                                                                                                                                                                                                                                                                                                                                                         
  ◦  Intuition  for  interpreting  results,measuring error 

 
                                                                                                                                                                                                                                                                                                                                                 

  ◦  Adapting  /  generalizing  methods  to  get  desired properties 
 • Implementation  (the numerical) 

 
                                                                                                                                                                                                                                                                                                                                                                                

  ◦  Translating  methods  to  actual code 
  

                                                                                                                                                                                                                                                                                                                                                                      
  ◦ Efficient implementation 

 
                                                                                                                                                                                                                                                                                                                                                                                      

  ◦  Developing  packages  for computing(COMSOL,Matlab,Retc.) 

 In  this c  ourse,  we  focus  more  on  the  first  two  aspects  and  address  the  last  one  in  less depth  . Hopefully,  you  will
 be  convinced  by  the  end  that  an  understanding  of  the  underlying mathematics  is  in  valuable,  even  when  one  is

 concerned  with  practical results.  
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