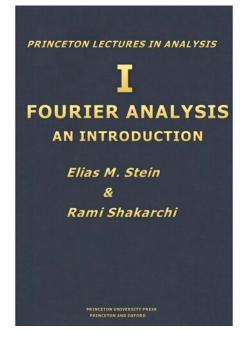
Course Description of Fourier Analysis and its Application

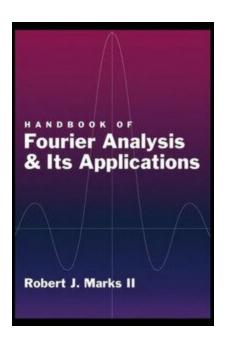
Fourier Analysis is a powerful tool for many problems, and especially for solving various differential equations of interest in science and engineering. The techniques presented in this course are well suited to study problems such as the vibrations of a stretched string (e.g. guitarstring), the vibrations of a stretched membrane (e.g. drumhead), the waves in an incompressible fluid, electromagnetic waves (e.g.lightorradiowaves); the diffusion of heat or the minimization of certain energies. This is a course in *applicable mathematics*.

The study of Fourier analysis can serve as a capstone course in undergraduate mathematics, because it builds on such a variety of mathematical topics. Solving ordinary differential equations is the most crucial prerequisite, but ideas from many other courses are useful. Some aspects of Fourier series are best understood by regarding the coefficients in the series as components of an infinite dimensional vector. Then linear algebra becomes useful, in particular ideas about eigenvalues and eigenvectors. Convergence properties for sequences and series enter the course as described above, and vector calculus occasionally makes an appearance.

The contents that will be covered in this course are from the following book and are listed in the next pages.



To show further applications of Fourier Analysis, we will choose appropriate examples from the following book.



Contents

Fore	oreword				
Pre	Preface				
Cha	hapter 1. The Genesis of Fourier Analysis				
1	The vibrating string	2			
	1.1 Derivation of the wave equation	6			
	1.2 Solution to the wave equation	8			
	1.3 Example: the plucked string	17			
2	The heat equation	18			
	2.1 Derivation of the heat equation	18			
	2.2 Steady-state heat equation in the disc	20			
3	Exercises	23			
4	Problem	28			
Cha	pter 2. Basic Properties of Fourier Series	29			
1	Examples and formulation of the problem	30			
	1.1 Main definitions and some examples	34			
2	Uniqueness of Fourier series	39			
3	Convolutions	44			
4	Good kernels	48			
5	Cesàro and Abel summability: applications to Fourier series	51			
	5.1 Cesàro means and summation	51			
	5.2 Fejér's theorem	52			
	5.3 Abel means and summation	54			
	5.4 The Poisson kernel and Dirichlet's problem in the				
	unit disc	55			
6	Exercises	58			
7	Problems	65			
Cha	pter 3. Convergence of Fourier Series	69			
1	Mean-square convergence of Fourier series	70			
	1.1 Vector spaces and inner products	70			
	1.2 Proof of mean-square convergence	76			
2	Return to pointwise convergence	81			
	2.1 A local result	81			
	2.2 A continuous function with diverging Fourier series	83			

3	Exercises	87
4	Problems	95
Cha	apter 4. Some Applications of Fourier Series	100
1	The isoperimetric inequality	101
2	Weyl's equidistribution theorem	105
3	A continuous but nowhere differentiable function	113
4	The heat equation on the circle	118
5	Exercises	120
6	Problems	125
Cha	pter 5. The Fourier Transform on ${\mathbb R}$	129
1	Elementary theory of the Fourier transform	131
	1.1 Integration of functions on the real line	131
	1.2 Definition of the Fourier transform	134
	1.3 The Schwartz space	134
	1.4 The Fourier transform on \mathcal{S}	136
	1.5 The Fourier inversion	140
	1.6 The Plancherel formula	142
	1.7 Extension to functions of moderate decrease	144
	1.8 The Weierstrass approximation theorem	144
2	Applications to some partial differential equations	145
	2.1 The time-dependent heat equation on the real line	145
	2.2 The steady-state heat equation in the upper half-	
	plane	149
3	The Poisson summation formula	153
	3.1 Theta and zeta functions	155
	3.2 Heat kernels	156
	3.3 Poisson kernels	157
4	The Heisenberg uncertainty principle	158
5	Exercises	161
6	Problems	169
\mathbf{Cha}	pter 6. The Fourier Transform on \mathbb{R}^d	175
1	Preliminaries	176
	1.1 Symmetries	176
	1.2 Integration on \mathbb{R}^d	178
2	Elementary theory of the Fourier transform	180
3	The wave equation in $\mathbb{R}^d imes \mathbb{R}$	184
	3.1 Solution in terms of Fourier transforms	184
	3.2 The wave equation in $\mathbb{R}^3 \times \mathbb{R}$	189

	3.3 The wave equation in $\mathbb{R}^2 \times \mathbb{R}$: descent	194			
4	Radial symmetry and Bessel functions				
5					
	5.1 The X-ray transform in \mathbb{R}^2	199			
	5.2 The Radon transform in \mathbb{R}^3	201			
	5.3 A note about plane waves	207			
6	Exercises	207			
7	Problems	212			
Chapter 7. Finite Fourier Analysis					
1	Fourier analysis on $\mathbb{Z}(N)$	219			
	1.1 The group $\mathbb{Z}(N)$	219			
	1.2 Fourier inversion theorem and Plancherel identi	ty			
	$ \text{on } \mathbb{Z}(N)$	221			
	1.3 The fast Fourier transform	224			
2	Fourier analysis on finite abelian groups	226			
	2.1 Abelian groups	226			
	2.2 Characters	230			
	2.3 The orthogonality relations	232			
	2.4 Characters as a total family	233			
	2.5 Fourier inversion and Plancherel formula	235			
3	Exercises	236			
4	Problems	239			
Cha	pter 8. Dirichlet's Theorem	241			
1	A little elementary number theory	241			
	1.1 The fundamental theorem of arithmetic	241			
	1.2 The infinitude of primes	244			
2	Dirichlet's theorem	252			
	2.1 Fourier analysis, Dirichlet characters, and redu	c-			
	tion of the theorem	254			
	2.2 Dirichlet <i>L</i> -functions	255			
3	Proof of the theorem	258			
	3.1 Logarithms	258			
	3.2 L-functions	261			
	3.3 Non-vanishing of the L -function	265			
4	Exercises	275			
5	Problems	279			
Appendix: Integration					
1	1 Definition of the Riemann integral				

	1.1	Basic properties	282
	1.2	Sets of measure zero and discontinuities of inte-	
		grable functions	286
2	Mult	iple integrals	289
	2.1	The Riemann integral in \mathbb{R}^d	289
	2.2	Repeated integrals	291
	2.3	The change of variables formula	292
	2.4	Spherical coordinates	293
3	Impre	oper integrals. Integration over \mathbb{R}^d	294
	3.1	Integration of functions of moderate decrease	294
	3.2	Repeated integrals	295
	3.3	Spherical coordinates	297
Notes and References			299
Bibliography			301
Symbol Glossary			305